Ideals in Group algebra of Heisenberg Group

M. L. Joshi

Abstract— In spectral theory ideals are very important. We derive the relation between non commutative and commutative algebra by a transformation which is associated to the semi-direct product of groups. We obtain and classify the ideal in L^1 -algebra of Heisenberg group.

Index Terms— Heisenberg group, Ideals in L^1 -algebra of the Heisenberg group, Semi-direct product.

1 INTRODUCTION

WE recall some definitions.

Definition 1.1: The Heisenberg group is the group of

3 X 3 upper triangular matrices of the form $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$

Definition 1.2: For $a \in \square^n$, $b \in \square^n$, $c \in \square$ and I_n (Identity matrix of order n), the *Heisenberg group of dimension* 2n+1 is the group of upper triangular matrices of the

form
$$\begin{pmatrix} 1 & d & b \\ 0 & I_n & c \\ 0 & 0 & 1 \end{pmatrix}$$
 (1.1)

Let Aut(\Box^{n+1}) is the group of all automorphisms of \Box^{n+1} then for any $a = (a_1, a_2, ..., a_n) \in \Box^n$ $b = (b_1, b_2, ..., b_n) \in \Box^n$, $c \in \Box$ and $ab = \sum_{i=1}^n a_i b_i$, de-

fine $G = \square^{n+1} \rtimes_{\rho} \square^n$ be the group of semi direct product of \square^{n+1} and \square^n by the group homomorphism $\rho : \square^n \to \operatorname{Aut}(\square^{n+1})$ which is defined by,

$$\rho$$
 (a) (b,c)= (b + ac , c) (1.2)

The inverse of an element in G is defined by

For X = ((a, b); c)
$$\in$$
 G,
X⁻¹ = ((a, b); c)⁻¹
= (-c(-a,-b); -c)
= ((-a + bc,-b); -c) (1.3)
Where -c(-a,-b) = ρ (-c) (-a,-b)

The multiplication of two elements X and Y in G is defined by

For X = ((a, b); c), Y = ((a', b'); c')
$$\in$$
 G,
X · Y = ((a, b); c) ((a', b'); c')
= ((a, b) + c(a', b'); c + c')

= ((a, b) + (a'+b'c, b'); c + c')= ((a+a'+b'c, b+b'); c + c') (1.4) Where c (a',b') = ρ (c) (a',b')

By mean of group isomorphism $\Psi: G \rightarrow H^n$ defined by

$$\Psi((c,b);a) = \begin{pmatrix} 1 & a & b \\ 0 & I_n & c \\ 0 & 0 & 1 \end{pmatrix}$$
 the group H^n with the

group G can be identified.

Definition 1.3: Let L^1 (M) be the Banach algebra that consists of all complex valued functions on the group M - an unimodular Lie group, which are integrable with respect to the Harr measure of M and multiplication is defined by convolution on M.

Let us denote the restriction of $\mathcal{L}^{1}(M)$ on any subgroup N of M by $\mathcal{L}^{1}(M)|_{N}$. Then $L^{1}(M)|_{N} = \left\{F|_{N}: F \in L^{1}(M)\right\}$ where $F|_{N}$ is the restriction of the function F on N.

2 PRILIMINARIES.

Let J is real vector group which is direct product of \Box^{n+1} and \Box^n and K is real vector group which is direct product of G and \Box^n then the group G can be identified with the closed subgroup G x {0} of K and J can be identified with the closed subgroup $\Box^{n+1} \rtimes_{\rho} \{0\} x \Box^n$ of K.

Let $L = \Box^{n+1} \times \Box^n \times \Box^n$ be the group of the direct product of \Box^{n+1} , \Box^n and \Box^n .

The inverse of element X in L is defined by
For X = ((a, b); c, d)
$$\in$$
 L,
X⁻¹ = ((a, b); c, d)⁻¹
= (-d (-a,-b); -c, -d)
= (-a+bd, -b); -c, -d) (2.1)

Where
$$-d(-a,-b) = \rho(-d)(-a,-b)$$

USER © 2010 http://www.ijser.org The multiplication of two elements X and Y in L is defined by

For X = ((a, b); c,d) , Y = ((a', b'); c',d')
$$\in$$
 L
X · Y = ((a, b); c,d) ((a', b'); c',d')
= ((a, b)+d(a', b'); c+c',d+d')

$$= ((a, b)+(a'+b'd, b'); c+c', d+d')$$

= ((a+a'+b'd, b+b'); c+c', d+d') Where $d(a', b') = \rho$ (d)(a', b').

In such a case the group G can be identified with the closed subgroup $\Box^{n+1} \rtimes_{\rho} \{0\} x \Box^n$ of L and J can be identified with the closed subgroup $\Box^{n+1} x \{0\} \rtimes_{\rho} \Box^n$ of L.

Let the subspace of all complex valued functions on L is denoted by $L_E^1(L)$ such that $L_E^1(L)|_G = L^1(G)$ and $L_E^1(L)|_J = L^1(J)$.

Definition 2.1 For every $f \in L^1_E(L)$, define a function f^* as follows. For all ((a, b); c, d) $\in L$,

$$f^*$$
 ((a, b); c, d) = f (c(a, b); 0, d + c) (2.3)

It is noted that for all ((a, b); c, d) \in L and k \in \square ^{*n*} the function f^* is invariant because,

 f^* (k(a,b); c - k, d + k) = f^* ((a, b); c, d) (2.4) Further it should be noted that restricted functions $f^* |_{G} \in L^1(G)$ and $f^* |_{J} \in L^1(J)$.

Definition 2.2: For every $v \in L^1$ (G) or $v \in L^1$ (J) and for any $F \in L^1_E$ (L) two convolutions product on the group L are defined by,

$$= \int_{G} F[((\mathbf{x}, \mathbf{y}); \mathbf{z})^{-1}((a, b); \mathbf{c}, \mathbf{d})]u((\mathbf{x}, \mathbf{y}); \mathbf{z})dxdydz$$

$$= \int_{G} F[-z(a-x, b-y); c, d-z)]u((x, y); z)dxdydz \quad (2.5)$$

(ii)
$$\vee *_{c} F((a, b); c, d)$$

= $\int F[(a-x, b-y); c-z, d)]u((x, y); z)dxdydz$

where dx dy dz is the lebesgue measure on group G.

Corollary 2.1: For each $v \in (G)$, $F \in L^1_E$ (L) and for all $((a, b); c, d) \in L$

v * F((a, b); c, d) = v * c F((a, b); c, d)

proof of this lemma is easily given by the help of (2.4), (2.5), (2.6).

Corollary 2.2 The mapping $\Pi: L^1(G) \to L^1(G)$ de-

fined by

(2.2)

$$\Pi(f^*|_G)((a, b), 0, c) = f^*|_G(c(a, b), 0, c)$$

is a topological isomorphism.

Proof follows from the fact that mapping Π is continuous and its inverse Π^{-1} defined by, $\Pi^{-1}(f^*|_G)((a, b), 0, c) = f^*|_G((\text{-}c(a, b)), 0, c)$

is also continuous.

Corollary 2.3 The mapping $\Omega: L^1(J) \to L^1(G)$ defined by

$$\Omega(f^*|_J)((a, b), 0, c) = f^*|_G(c(a, b), 0, c)$$

is a topological isomorphism.

Proof follows from the fact that mapping Ω is continuous and its inverse Ω^{-1} defined by, $\Omega^{-1}(f^*|_G)((a, b), c, 0) = f^*|_J((-c(a, b)), c, 0)$ is also continuous.

Remark: For $I \in L^1_E(L)$, I^* is the image of I under

- mapping * . Let E = I^* |G, then $I_{}$ |G = I^* |G = E
- Theorem 1. Let I be a subset of $L^1_E(L)$, then $E = I|_G$ is a left ideal in the algebra $L^1(J)$ if and only if $I' = I|_J$ is an ideal in the algebra $L^1(J)$.

Proof: First suppose $I' = I|_J$ is an ideal in the algebra $L^1(J)$.

By considering the group $K = G \times \square^n$ and the mapping $f \to f^*$ which is defined by, $f^*((a, b); c, d) = f(-c(a, b); 0, c+d)$

it is easy to show that $I' = I|_J$ is an ideal in the algebra $L^1(J)$.

Conversely suppose that $I' = I |_J$ is an ideal in the algebra $L^1(J)$.

We know that $v *_c I' \subseteq I'$ and $v *_c I \subseteq I$ for any $v \in L^1(J)$ where $v *_c I' = \{v *_c (F \mid_J), F \in I\}$ and

$$v *_{c} I = \{ v *_{c} F, F \in I \}$$

If I^* is the image of I under the mapping *, then we have, $v * I^* = v *_c I^* \subseteq I$

and by taking the restriction on the group $G_{,}$

we have
$$v * I^* |_G = v * I |_G \subseteq I$$

So that $v * E \subseteq E$.

This proves that $E = I \mid_G$ is a left ideal in the algebra

G

(2.6)

 $L^1(J)$.

Ann. Math., 68, pp. 709–712.

3. RESULTS

From the above theorem the following results can be verified easily.

(i) If Γ be a subspace of the space $L^1(K)$ such that $I = \Gamma^* |_J$ is an ideal in $L^1(J)$, then (i) $I = \Gamma^* |_J$ is a maximal ideal in the algebra $L^1(J)$ if and only if $E = \Gamma |_G$ is a left maximal ideal in the algebra $L^1(G)$.

(ii) $I = \Gamma^{-}|_{J}$ is a closed ideal in the algebra $L^{1}(J)$ if and only if $E = \Gamma|_{G}$ is a left closed ideal in the algebra $L^{1}(G)$.

(iii) $I = \Gamma^{'}|_{J}$ is a dense ideal in the algebra $L^{1}(J)$ if and only if $E = \Gamma|_{G}$ is a left dense ideal in the algebra $L^{1}(G)$.

ACKNOWLEDGMENT

We are thankful to Prof. L. N. Joshi, Retd. Prof in mathematics, D.K.V. Science College, Jamnagar and Prof. J. N. Chauhan, Mathematics Department, M. & N. Virani Science College, Rajkot for their cooperation in the preparation of this paper. We are also thankful to the numerous referees for their helpful and valuable comments.

REFERENCES

- [1] Rudin,W., 1962, "Fourier analysis on groups," Interscience publ, NewYork.
- [2] C. A. Akemann and G. K. Pedersen, *Ideal perturbations* of elements in C^{**} algebras, Math. Scand. 41 (1977) 117-139.
- [3] H. J. Dauns, The primitive ideal space of a C^* -algebra, Canadian J. Math. 26 (1974) 42-49
- [4] Beurling, A., 1949, "On the spectral synthesis of bounded functions," Acta. Math., 81, pp. 225–238.
- [5] Helson, H., 1952, "On ideal structure of group algebras," Ark. Math., 2, pp. 83–86.
- [6] Reiter, H.J., 1948, "On certain class of ideals in the L¹algebra of a locally compact abelian group," Hans. Am. Soc, 75, pp. 505–509.
- [7] Calderon, A.P., 1956, "Ideals in group algebra, symposium on Harmonic analysis and related integral transforms," Cornell University (imimeographed).
- [8] Hers, C.S., 1958, "Spectral synthesis for the circle,"